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Summary

Tree seedlings are planted on sites of widely differing climatic,
edaphic and vegetative characteristics. Seedling transplant shock,
defined as seedling mortality or impaired growth soon after
planting, has been reported across this spectrum of planting
conditions. Thus, transplant shock is used to describe a
phenomenon that embraces many distinct physiological responses
to stress. This review lists and discusses the potential sources of
transplant shock for containerised tree seedlings and suggests
options for minimising its detrimental effects for a range of specific
causes. Through an understanding of the physiological basis
underlying transplant shock under a given set of conditions, it
may be possible to eliminate, or at least minimise, the effects of
transplant shock on containerised tree seedlings soon after planting.
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Introduction

Transplant shock, also referred to as transplant stress or planting
check, is used to describe the negative effects on growth and
survival when nursery-raised stock is planted into a new
environment. Transplant shock is expressed through a range of
symptoms that include a decreased growth rate of newly planted
seedlings compared to naturally regenerating seedlings of the same
age, and leaf abscission and mortality under severe conditions
(Reitveld 1989). Transplant shock is associated also with
acclimatisation of seedlings to the new environmental conditions.

The sites to which seedlings are transplanted can encompass a
wide range of climatic and edaphic conditions. Thus transplant
shock is often used to describe a suite of visual or growth responses
to plant stress that are related to distinct physiological mechanisms
or processes. The description of these various processes using a
single term is therefore, at best, ambiguous. The definition of
transplant shock is further complicated by the wide range of
physical, nutritional and physiological states of seedlings that it is
attributed to. These states, and the way they interact with the

condition at the planting site, predispose seedlings to specific
forms of plant stress.

This paper addresses the physiological basis of tree seedling
transplant shock in the context of possible factors that underlie
its cause. These factors are separated into three categories:
(a) within-plant characteristics; (b) abiotic stress factors; and
(c) interaction with the surrounding environment.

Within-plant characteristics

Acclimatisation between the nursery and the field

Tree seedlings acclimatise to the growing environment in the
nursery. If field conditions differ from those in the nursery, the
transplanted seedling will be stressed as acclimatisation occurs
over several days or weeks. Many plant stresses have a negative
effect on photosynthesis. Thus strategies for dealing with light
absorption under conditions of decreased photosynthetic activity
are crucially important to seedlings suddenly exposed to new
environmental conditions. The occurrence of decreased
photosynthetic efficiency is termed photoinhibition. This may arise
directly due to sudden increases in irradiance, or indirectly through
a stress that limits photosynthesis and induces conditions of excess
light absorption, e.g. low temperature, water-logging or drought.
Low temperature limits photosynthesis by slowing dark reactions
(Havaux 1995; Stitt and Hurry 2002). Water-logging and drought
restrict water uptake (Bradford and Hsaio 1982; Munns et al.
1983) and limit photosynthesis primarily through stomatal closure
(Chaves 1991).

Photoinhibition is defined as a sustained reduction in the efficiency
of photosystem II (Long et al. 1994) and occurs whenever the
absorption of light energy exceeds its utilisation (Huner et al.
1993). Various physiological processes are available in plants to
dissipate this excess energy. Three of these processes are the
xanthophyll cycle (Close et al. 2003a), the capacity of which is
proportional to the size of the xanthophyll cycle pool (Adams
and Barker 1998), photorespiration, and the water-water cycle
(see Niyogi 1999). If their capacity for dissipating excess energy
is exceeded, highly reactive and damaging oxygen and chlorophyll
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radicals are formed (Asada 1992; Foyer et al. 1994). Scavenging
compounds and enzyme systems quench these radicals but their
capacity can also be exceeded. Damage to chlorophylls,
carotenoids and lipid bilayers results in photobleaching or
photodamage to plant tissues (Wise and Naylor 1987). If severe,
leaf death and abscission and seedling mortality can result (Close
et al. 1999, 2000).

A fourth means of photoprotection is anthocyanin. This pigment
is synthesised immediately below the epidermis in Eucalyptus
globulus and E. nitens (Close 2001; Close et al. 2000, 2001b),
Pinus sylvestris (Nozzolillo et al. 1989) and P. banksiana (Krol
et al. 1995) seedlings. It is hypothesised that anthocyanin alleviates
photoinhibition by absorption of light between 400 and 590 nm
(Pietrini and Massacci 1998; Close and Beadle 2003b, 2004a).
The accumulation of foliar anthocyanin has been proposed to be
an indicator of hardiness to low temperature in E. nitens seedlings
(Close et al. 2004a).

The acclimatisation condition at planting will depend to a large
extent on the difference between the nursery and planting
environments. Some acclimatisation is always required, as
seedlings are grown at high densities and self shade in the nursery,
resulting in some foliage being shade adapted. For example,
nursery-grown seedlings of eastern hemlock (Tsuga canadensis)
had survival of 58 and 100% after transplanting from shaded to
fully exposed or shaded planting sites, respectively (Mohammed
and Parker 1999).

The potential capacity of a seedling to acclimatise to field
conditions is also important (Close et al. 2001a). Different species
and sub-populations within species have different capacities to
acclimatise to a large increase in irradiance (Battaglia et al. 1996;
Tognetti et al. 1998). For example, E. nitens seedlings have higher
concentrations of anthocyanin and carotenoids than E. globulus
seedlings raised under identical conditions and therefore require
less acclimatisation after planting and exposure to high light (Close
et al. 2000, 2002). Similar differences exist amongst conifers.
Sun scald or photodamage is a significant cause of mortality in
seedlings of Tsuga canadensis, T. heterophylla and Abies amabilis
(Tucker and Emmingham 1977; Tucker et al. 1987) following
transplanting. However, rapid acclimatisation of pre-existing
foliage to the higher light environments associated with field
conditions has been reported for Picea abies (Spunda et al. 1993)
and Picea glauca (Leiffers et al. 1993). Acclimatisation to the
prevailing light condition may be differentiated at the species and
subspecies level through the activity of the xanthophyll cycle
(Adams et al. 1994).

One method of minimising the period and extent of acclimatisation
after planting is to carefully match species to site characteristics.
This practice has been the focus of much research (Saunders et
al. 1984; Booth et al. 1988, 1989; Booth and Pryor 1991) and
has been adopted by the forestry industry. The importance of the
state of acclimatisation of a seedling at planting is also recognised
in the forest industry. Outdoor nursery areas in conjunction with
the withholding of nutrients and/or water are commonly used to
‘harden off’ seedlings (Colombo 1986; Gebre and Kuhns 1991;
Anderson and Helms 1994). The withholding of nutrients is usually
an effective means of hardening for low field temperatures. For
example, the risk of cold-induced photodamage was minimised
when seedlings raised in a mild environment were deprived of N

in the nursery (Close et al. 2000). However, if exposure to low
temperature before planting has occurred, N deprivation may not
be required as seedlings may already be hardened to cold-induced
photoinhibition (Close et al. 2001a,b).

Nutritional status

Fertiliser application using water-soluble nutrients via irrigation
systems (‘fertigation’) is used as a management tool to control
and adjust seedling growth rate in the nursery (Close and Beadle
2004a). Thus seedlings can vary to a large degree in their micro-
and macro-nutrient concentrations (Larsen et al. 1988).
Conversely, toxicities and deficiencies can occur due to inappro-
priate nutrient application or imbalance of applied nutrients.
Macro-nutrient deficiencies are the most common and are a major
source of transplant shock.

Nursery managers use macronutrients to manage seedling growth
and to meet a particular seedling specification. Foliar nitrogen
has been shown to correlate strongly with seedling growth after
planting (Carlson 1986; Larsen et al. 1988; Thaler and Pages 1996;
Close et al. 2003b, 2005). Seedlings deficient in N put their
available resources into root growth, to acquire N, at the expense
of shoot growth. Recent evidence has indicated the importance of
N stored in foliage, and its retranslocation, for new growth (Close
2001; Warren and Adams 2001; Close and Beadle 2003a, 2004b).
Internal recycling of nutrients from foliage has been shown to
supply up to 100% of nutrients for new growth in seedlings soon
after planting (Folk and Grossnickle 2000).

Sampling for foliar nutrient analysis is widely practised and
indicates the necessity for corrective nutrient application during
the seedling production period. Trials of nutrient application
methods for nurseries under well-defined environmental
conditions (Close et al. 2003c, 2004b, 2005) and using potting
mixes that affect the leaching (Geraldson 1996) and draw-down
(Bragg and Whiteley 1995) of nutrients have provided useful
information. For example seedlings at nurseries in regions of high
temperature and rainfall need higher levels of nutrient application
for a given level of uptake, as more nutrient remains in solution
and leaches out of the potting mix. Seedlings in potting mixes
with higher air-filled porosity and higher microbial populations
also need higher nutrient application for a given level of uptake,
as leaching and draw-down are proportionately greater.

Nutrient/carbohydrate reserves and biomass partitioning

Carbohydrate and nutrient reserves in seedlings at planting need
to be above a critical level to ensure that new growth occurs: this
level may be species dependent and vary with site conditions
(Balneaves and Fredric 1983; Balneaves et al. 1985; Lauer 1987;
Jinks and Kerr 1999; South and Mitchell 1999). Levels of
carbohydrate and nutrient reserve are related to seedling size
(Ritchie 1982). For example, the larger of two P. banksiana stock
types of otherwise similar genetic origin and age had greater
survival and growth relative to the smaller stock type (Mohammed
et al. 1998). In the same study, larger amounts of available,
retranslocatable nutrient were associated with higher photo-
synthetic rates (Mohammed et al. 1998). Adequate carbohydrate
reserves are essential also under conditions where photosynthesis
is restricted but resources are still required for maintenance
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respiration and to support new leaf development where stress (e.g.
severe drought, frost or browsing) has led to leaf loss after planting.

Low shoot:root ratio and high root regeneration capacity
(characterised by a high number of root tip apices) are desirable
for maximising new growth after planting. However, the shoot:root
ratio is relatively high after nursery production in containers and
this restricts acquisition of sufficient nutrients and water to support
shoot growth after planting (Ledig 1983; Reitveld 1989; Close
2001). For example, growth of Pinus taeda seedlings after planting
was strongly negatively correlated with shoot:root ratio at planting
(Larsen et al. 1988). The physiological basis of this effect has
been investigated using just-transplanted, non-water-stressed
Picea mariana seedlings. The seedlings had decreased levels of
all foliar macro- and some micro-nutrients, total amino acids and
sucrose relative to non-transplanted controls (Young et al. 1999).
These results are consistent with those in recently-transplanted
Eucalyptus seedlings (Close 2001; Close and Beadle 2004a) and
are indicative of retranslocation of mobile nutrients to enable new
root growth.

Container depth has been found to better correlate with seedling
growth after planting than container volume and many other pre-
planting seedling specifications (Close et al. 2003b). Deeper
containers do not necessarily decrease shoot:root ratio but affect
root architecture by increasing the initiation of primary roots in
the container (Nelson 1996). Thus the soil mass initially occupied
by roots increases with increasing container depth.

Large seedling size ensures an adequate carbohydrate and nutrient
reserve after planting (South and Mitchell 1999). However, this
should not be driven by an increased shoot:root ratio which can
be detrimental to successful establishment (Larsen et al. 1988).
Seedling production in larger plugs (i.e. ≥ 85 cf. 50 cm3) with
adequate, but not excessive, fertiliser application, and minimising
the holding period in the nursery to keep down shoot:root ratio,
may be desirable. Avoidance of shallow containers will ensure
poor root architecture does not limit seedling growth after planting.

Abiotic/environmental stress

Drought

Drought-induced stress is the most widely studied and perhaps
the most common cause of transplant shock in tree seedlings (Jarvis
and Jarvis 1963; Burdett et al. 1983, 1984; Grossnickle 1988).
Seedlings often become water stressed soon after planting, as the
soil volume accessed by roots of a naturally established seedling
is more than ten-fold that of a transplanted seedling of the same
shoot size (Burdett 1990). Drought stress following transplanting
is further exacerbated by poor acclimatisation to the field
environment (Rowe 1964). In the nursery, seedlings are within
relatively close proximity to one another, sheltered from wind
and watered frequently. Under such conditions leaves of high
area:mass ratio and seedlings of high shoot:root ratio are formed
which are not well suited to maintaining a favourable water balance
in field environments. A low shoot:root ratio leads to a better
balance between root water acquisition and shoot water loss
following transplanting (Ledig 1983) and a low leaf area:weight
ratio minimises stomatal water loss (Wright et al. 2001).

Leaves have physiological mechanisms that provide adaptation
to drought. Maintenance of leaf turgor, that is required for many
growth-related processes, can be achieved through changes in
osmotic potential or tissue elasticity (Tyree and Jarvis 1982).
Adjustment in either osmotic potential (e.g. Anderson and Helms
1994), or cell wall elasticity (e.g. Bowman and Roberts 1985), or
a combination of the two (e.g. White et al. 1996) occurs in response
to drought stress. Osmotic adjustment, by decreasing the osmotic
potential of the cells, increases water retention under dehydrating
conditions. This is achieved using organic solutes, termed
compatible solutes due to their compatible nature with the structure
and function of other cellular macromolecules. Sugars and free
amino acids contributed to osmotic adjustment in Picea mariana
seedlings during development of drought tolerance (Tan et al.
1992). Increased cell wall elasticity involves increases in
hemicellulose and decreases in lignin and cell wall pectin in
P. glauca seedlings subjected to drought conditions (Zwiazek
1991).

A watering regime slightly restricting water availability to
seedlings may induce morphological and physiological
characteristics conferring drought tolerance (Bacon and Bachelard
1978). This may be effected by plant endogenous growth
substances. Drought-conditioning, through either irrigation cycling
in the nursery or root pruning in open-rooted stock, significantly
reduced levels of gibberellin and cytokinen activity, increased
inhibitor levels, and had no effect on auxin activity in Pinus
caribaea seedlings (Bacon and Bachelard 1979). An induced water
limitation decreased leaf mass:area ratio which was associated
with drought tolerance in Picea sitchensis (Hellkvist et al. 1974).
Droughting in the nursery decreased osmotic potential in seedlings
of Eucalyptus camaldulensis, E. tereticornis, E. viminalis and
E. grandis (Lemcoff et al. 1994) and decreased osmotic potential
and increased cell wall elasticity in P. mariana seedlings that led
to the development of drought tolerance after planting (Colombo
1986).

Frost

Tree seedlings planted into cold environments are susceptible to
frost damage for a number of reasons. Firstly, the seedlings may
not be acclimatised to the low temperatures experienced after
planting. Secondly, young, recently developed foliage often has a
high water content and relatively large-celled leaves with a low
osmotic concentration, characteristics that are associated with a
high susceptibility to frost. Thirdly, cold air stratification and
pooling of cold air close to ground-level expose seedlings to
extremely low temperatures. Fourthly, cleared forest sites attain
minimum temperatures below adjacent forested areas due to the
loss of infra-red radiation to clear night skies (Nunez and Bowman
1986). In addition, the leaf temperature of exposed leaves at night
may be lower than the air temperature due to radiative cooling
(Jordan and Smith 1995). Nevertheless, tree seedlings often adjust
to the prevailing site conditions. This is because tree seedlings
acclimatise, or ‘harden’, to frost. Unusually early or late frosts
can cause serious frost injury, as seedlings may not be hardened.
Further, hardening occurs within certain genetic constraints. For
example, E. globulus has a lower frost tolerance than E. nitens
under identical environmental conditions, and this is a factor in
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its planting distribution (Hallam et al. 1989; Close et al. 2000;
Davidson et al. 2004). Eucalyptus nitens populations from distinct
geographic origins also differ in their susceptibility to frost
(Raymond et al. 1992a,b).

Low, non-freezing temperatures trigger increased frost tolerance
or hardiness. The physiology of frost tolerance involves a general
relationship where hardiness is correlated with increased
concentrations of soluble sugars and other compatible solutes
(Ögren et al. 1997; Wanner and Junttila 1999) and increased
cellular membrane stability via changed lipid composition
(Thomashaw 1999). The frost tolerance of Pinus radiata (D. Don)
increases in a curvilinear fashion as low, but above-freezing
temperatures decrease. Hardening occurred at temperatures below,
and dehardening at temperatures above, 9.5ºC. The balance
between the two processes determines the development of frost
hardiness (Greer et al. 2000).

Logging minimum temperatures in the nursery can provide an
initial indication of potential frost hardiness. Many nurseries are
situated at low altitudes on mild sites that maximise the early
growth of seedlings. In this case, an intermediate holding area at
higher altitude may be beneficial before planting on cold sites,
although in practice this may be difficult to manage. Matching
the hardening potential of species to site conditions is essential
and widely practised (Tibbits et al. 1997). Tree guards can mitigate
frost effects by excluding cold air flow at night and by trapping
warm air during the day.

Mechanical damage

Mechanical stress, predominantly caused by wind but also by
snow, ice or rain, can lead to stem breakage after planting. In the
nursery, seedlings protect each other from wind. In addition,
nurseries are in sheltered locations or protected by windbreaks.
Apart from lack of acclimatisation to wind, the risk of stem
breakage is exacerbated if seedlings have large and broad tops,
have a large height:stem diameter ratio (Essen 1994; Munishi and
Chamshama 1994; Guo 1999; Peltola et al. 2000) or have
inadequately lignified stems due to rapid growth or nutrient
imbalance (Graham 1976; Turvey et al. 1992; Cachorro et al.
1993; Dell 1994; Padu 1999).

Thigmomorphogenesis is defined as ‘the strain and associated
physiological and morphological responses of plants to wind and
other mechanical stresses’ (Jaffe 1973). The few studies on
thigmomorphogenesis in herbaceous annuals and tree seedlings
indicate that seedlings show relatively large responses to low doses
of artificial flexure or wind (Jaffe 1980; Telewski and Jaffe
1986a,b). In general, there is either decreased height growth or
increased collar diameter growth or both; increased xylem
production at the point of flexure; and decreased leaf area.

Seedling stems of E. nitens have been observed to be ‘flattened’
after strong winds soon after removal from the glasshouse to an
outside growing area. However, they resumed their upright habit
within one to two weeks after the event (Close unpublished results).
Stem breakage of 7–8% of rapidly grown E. globulus (indicative
of inadequate lignification) occurred within 4 weeks after planting
during high wind events, but none thereafter (Close et al. 2003b).
Thus, unless extreme wind, snow, hail or rain events occur,
seedlings are likely to rapidly and successfully acclimatise to

environmental conditions through thigmomorphogenesis after
planting.

Considerable research has been conducted by the horticultural
industry on ‘brushing’ vegetable seedlings by passing a lowered
boom across seedling tray beds set at 75% of seedling height
(Latimer and Thomas 1991; Baden and Latimer 1992; Johjima et
al. 1992; Garner and Björkman 1996) or alternatively using high-
powered fans to simulate natural winds (Biddington 1986; Jeong
and Lee 1990). However, use of these techniques in the forestry
industry has not yet been reported. Exposure of seedlings to a
naturally windy environment is an alternative method of treatment
(Hunt and Jaffe 1980; Cipollini 1998). This can be a holding area
at the nursery if not too sheltered, or alternatively, an exposed
site. Sufficient stem lignification can be ensured by matching the
utilisation of nutrients to their application (Cachorro et al. 1993).
This will have the effect of ensuring that leaf area is not excessive,
which keeps ‘bushiness’ down. Seedlings should not be shaded
as this leads to excessive stem elongation (Ballare et al. 1991;
Weinig and Delph 2001).

Interactions with the surrounding environment

Soil physical and nutritional conditions

Soil physical condition has a large impact on seedling growth
rates soon after planting. Many studies have shown the benefits
to seedling growth of decreasing soil bulk density by mounding
the topsoil and/or ripping to about 0.5 m depth (e.g. Shishiachi
and Adachi et al. 1982; Corns 1988; Minore and Weatherly 1990;
Kube 1993; Farrish et al. 1995; Conlin and van den Driessche
1996) particularly where soils contain high clay content or
hardpans and where lack of soil cultivation can decrease seedling
survival (Whitman et al. 1997). The benefits of cultivation are
due to the decreased amount of energy the seedling has to expend
to extend its roots into the soil profile and acquire essential oxygen,
water and nutrients (Conlin and van den Driessche 1996). Growth
of E. nitens (Kube 1993), P. taeda (Scheerer et al. 1995), Swietenia
macrophylla (Whitman et al. 1997), Pinus rigida, P. nigra and
Picea abies (Halverson and Zisa 1982) seedlings was impaired if
planted onto compacted, uncultivated compared to cultivated soils.

If soils are blocky or clumpy and seedlings are not planted
carefully, poor rootball-soil contact can occur (Sands 1984; Wilson
and Clark 1998), particularly if soils of high clay content shrink
and crack upon drying. Coarse-textured potting media lose
moisture to finer-textured or drier soils (Heiskanen and Rikala
2000). This causes air gaps to form between potting media and
surrounding soil, and prevents moisture and nutrient uptake (Sands
1984). The recovery of the transplanted seedlings is a function of
the rate at which new roots regenerate (Sands 1984). Root ball
exposure to the soil surface often results in drought-induced
mortality as the high air-filled porosity of potting mix induces
rapid dehydration upon exposure to air.

Many studies have demonstrated the benefits of fertiliser
application to seedlings soon after planting on infertile soils (e.g.
Drechsel and Schmall 1990; Herbert 1990; Barros et al. 1992;
Grewal et al. 1993; Mhando et al. 1993; Li et al. 1999). Such
application can offset the need for stored reserves, increase the
shoot:root ratio required at planting, and speed the onset of shoot
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growth. However, nutrient applied too close to the base of
seedlings can be toxic and lead to reduced growth and seedling
death. Fertiliser application in a spade slit 10–15 cm down-slope
of the seedling stem is recommended (Smethurst 1998).

Cultivation, mounding and sometimes ripping of soil, are now
considered standard or best practice techniques for site preparation
for rapid seedling growth after planting (e.g. Kube 1993). Soil
variation with depth, determined with a soil auger, can indicate
hardpans or clayey subsoils and thus the potential benefit of
ripping. Loss of soil-root ball contact does not usually occur if
soil cultivation produces a fine tilth (Sands 1984), mounds are
left to settle for at least 2–3 mo and seedlings are planted with
care so that the potting mix of the root ball is well covered by soil
and the soil firmly surrounds the root ball (M. Lavery, Arianda
Pty Ltd, Newport, Vic., July 2001, pers. comm.).

Competition with surrounding vegetation

Weeds often invade planting sites before, during or soon after
planting. Broadleaved weeds and grasses can compete very
strongly for light, water and nutrients. Grasses are particularly
vigorous competitors, forming dense root mats immediately below
the soil surface (Watson 1988; Harmer 1996). This can severely
stress tree seedlings with small root balls which are limited in
their ability to acquire water and nutrients within the soil profile
(Burdett 1990) and then may become light limited if weeds grow
taller than seedlings (e.g. Flint and Childs 1987; Jobidon et al.
1998; Wang and Wang 2000). For example, under conditions of
herbaceous vegetation competition, larger P. banksiana seedlings
had survival and collar diameter increments of 60% and 0.33 mm
compared to 37% and 0.25 mm of smaller seedlings of similar
genetic origin and age (Mohammed et al. 1998). A further
detrimental effect of competing vegetation is an increase in frost
severity and occurrence (Ball et al. 1997). Eucalyptus pauciflora
seedlings were exposed to average minimum air temperatures 2°C
higher when planted into bare soil than into a grassy ground cover
(Ball et al. 1997). The temperature of bare soil also increases
more rapidly and to a higher temperature than if covered by grass,
as grass insulates the soil during the day. Thus greater frost severity
and occurrence can be detrimental to seedling growth in spring
and ultimately shorten the effective growing season (Ball et al.
1997).

Seedling size, large reserves of carbon and nutrients, and a high
root:shoot ratio increase the ability of tree seedlings to compete
for light, water and nutrients (Mohammed et al. 1998; South and
Mitchell 1999). Effective weed control is essential, using
knockdown and residual herbicides or mulching if practical.
Mechanical scalping (removal of top few centimetres of soil) can
be used but is usually not as effective as chemical control, and it
results in the loss of soil that has high moisture- and nutrient-
holding capacity (Fleming et al. 1998). Early site preparation,
with spring, autumn and post-planting herbicide application, is
probably optimal to ensure adequate weed control, particularly
on ex-agricultural pasture sites (Fleming et al. 1998; Nilsson and
Orlander 1999).

Conclusions

This review has outlined the potential factors that cause transplant
shock in tree seedlings in the context of plant acclimatisation and
environmental conditions at planting. The area most widely studied
has been the effect of site preparation. The areas most neglected
by researchers, and those that may have the greatest economic
impact on improved seedling survival and growth, are the
physiology of seedling planting condition, particularly in relation
to frost and drought tolerance. Thus there are opportunities to
foster new research into the mitigation of transplant shock that
can decrease the occurrence of seedling mortality and impaired
growth at planting. Such research will also lead to general
improvements in nursery practices that will include ‘physiological
hardening’ as a tool for producing seedlings suited to a range of
planting environments.
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